Windows Theano GPU 版配置
| 
                         因为自己在上Coursera的Advanced Machine Learning,里面第四周的Assignment要用到PYMC3,然后这个似乎是基于theano后端的。然而CPU版TMD太慢了,跑个马尔科夫蒙特卡洛要10个小时,简直不能忍了。所以妥妥换gpu版。 为了不把环境搞坏,我在Anaconda里面新建了一个环境。(关于Anaconda,可以看我之前翻译的文章) Conda Create -n theano-gpu python=3.4 (theano GPU版貌似不支持最新版,保险起见装了旧版) conda install theano pygpu 这里面会涉及很多依赖,应该conda会给你搞好,缺什么的话自己按官方文档去装。 然后至于Cuda和Cudnn的安装,可以看我写的关于TF安装的教程 和TF不同的是,Theano不分gpu和cpu版,用哪个看配置文件设置,这一点是翻博客了解到的: .theanorc.txt 文件内容: [global] openmp=False device = cuda floatX = float32 base_compiler = C:Program Files (x86)Microsoft Visual Studio 12.0VCbin allow_input_downcast=True [lib] cnmem = 0.75 [blas] ldflags= [gcc] cxxflags=-IC:UserslyhAnaconda2MinGW [nvcc] fastmath = True flags = -LC:UserslyhAnaconda2libs compiler_bindir = C:Program Files (x86)Microsoft Visual Studio 12.0VCbin flags = -arch=sm_30 注意在新版本中,声明用gpu从device=gpu改为device=cuda 然后测试是否成功: from theano import function,config,shared,tensor
import numpy
import time
vlen = 10 * 30 * 768  # 10 x #cores x # threads per core
iters = 1000
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen),config.floatX))
f = function([],tensor.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in range(iters):
    r = f()
t1 = time.time()
print("Looping %d times took %f seconds" % (iters,t1 - t0))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op,tensor.Elemwise) and
              ('Gpu' not in type(x.op).__name__)
              for x in f.maker.fgraph.toposort()]):
    print('Used the cpu')
else:
    print('Used the gpu') 
输出: [GpuElemwise{exp,no_inplace}(<GpuArrayType<None>(float32,vector)>),HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.377000 seconds
Result is [ 1.23178029  1.61879349  1.52278066 ...,2.20771813  2.29967761
  1.62323296]
Used the gpu 
到这里就算配好了 然后在作业里面,显示Quadro卡启用 但是还是有个warning WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions. 这个真不知道怎么处理 然后后面运行到: with pm.Model() as logistic_model:
    # Since it is unlikely that the dependency between the age and salary is linear,we will include age squared
    # into features so that we can model dependency that favors certain ages.
    # Train Bayesian logistic regression model on the following features: sex,age,age^2,educ,hours
    # Use pm.sample to run MCMC to train this model.
    # To specify the particular sampler method (Metropolis-Hastings) to pm.sample,# use `pm.Metropolis`.
    # Train your model for 400 samples.
    # Save the output of pm.sample to a variable: this is the trace of the sampling procedure and will be used
    # to estimate the statistics of the posterior distribution.
    
    #### YOUR CODE HERE ####
    
    pm.glm.GLM.from_formula('income_more_50K ~  sex+age + age_square + educ + hours',data,family=pm.glm.families.Binomial())
    with logistic_model:
        trace = pm.sample(400,step=[pm.Metropolis()]) #nchains=1 works for gpu model
        
    ### END OF YOUR CODE ### 
这里出现的报错: GpuArrayException: cuMemcpyDtoHAsync(dst,src->ptr + srcoff,sz,ctx->mem_s): CUDA_ERROR_INVALID_VALUE: invalid argument 这个问题最后github大神解决了: trace = pm.sample(400,step=[pm.Metropolis()]) #nchains=1 works for gpu model 加上nchains就好了,应该是并行方面的问题 trace = pm.sample(400,step=[pm.Metropolis()],nchains=1,njobs=1) #nchains=1 works for gpu model 另外 plot_traces(trace,burnin=200) 出现pm.df_summary报错,把pm.df_summary 换成 pm.summary就好了,也是github搜出来的。 (编辑:莱芜站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!  | 
                  
- windows-services – 监控单个窗口服务的性能
 - windows-installer – 安装期间的错误代码2753
 - New-Object上的Windows RT Powershell(Permissio
 - .net – 在桌面下打开和关闭Windows 8触摸键盘ta
 - 如何在不事先知道其本地化名称的情况下使用Windo
 - windows – 如何为非Qt应用程序创建Qt共享库
 - 在Windows上“无法找到vcvarsall.bat”错误
 - windows安装mysql碰到的问题、
 - windows-server-2008-r2 – Windows任务计划程序
 - Windows Phone 7 – 如何在WIndows Phone应用程序
 
