windows下编译mxnet并使用C++训练模型
| 
                         大多数情况下,mxnet都使用python接口进行机器学习程序的编写,方便快捷,但是有的时候,需要把机器学习训练和识别的程序部署到生产版的程序中去,比如游戏或者云服务,此时采用C++等高级语言去编写才能提高性能,本文介绍了如何在windows系统下从源码编译mxnet,安装python版的包,并使用C++原生接口创建示例程序。 目标
 环境
 步骤下载源码最好用git下载,递归地下载所有依赖的子repo,源码的根目录为mxnet git clone --recursive https://github.com/dmlc/mxnet 依赖库在此之前确保cmake和python已经正常安装,并且添加到环境变量,然后再下载第三方依赖库 
 cmake配置打开cmake-gui,配置源码目录和生成目录,编译器选择vs2015 win64 配置第三方依赖库 configure和generate 编译vs工程打开mxnet.sln,配置成release x64模式,编译整个solution 编译完成后会在对应文件夹生成mxnet的lib和dll 此时整个过程成功了一半 安装mxnet的python包有了libmxnet.dll就可以同源码安装python版的mxnet包了 不过,前提是需要集齐所有依赖到的其他dll,如图所示,将这些dll全部拷贝到mxnet/python/mxnet目录下 tip: 关于dll的来源 
 然后,在mxnet/python目录下使用命令行安装mxnet的python包 python setup.py install 安装过程中,python会自动把对应的dll考到安装目录,正常安装完成后,在python中就可以 import mxnet 了 生成C++依赖头文件为了能够使用C++原生接口,这一步是很关键的一步,目的是生成mxnet C++程序依赖的op.h文件 在mxnet/cpp-package/scripts目录,将所有依赖到的dll拷贝进来 在此目录运行命令行 python OpWrapperGenerator.py libmxnet.dll 正常情况下就可以在mxnet/cpp-package/include/mxnet-cpp目录下生成op.h了 如果这个过程中出现一些error,多半是dll文件缺失或者版本不对,很好解决 构建C++示例程序建立cpp工程,这里使用经典的mnist手写数字识别训练示例(请提前下载好mnist数据,地址:mnist),启用GPU支持 选择release x64模式 配置include和lib目录以及附加依赖项 include目录包括: 
 lib目录: 
 附加依赖项: 
 代码 main.cpp #include <chrono>
#include "mxnet-cpp/MxNetCpp.h"
using namespace std;
using namespace mxnet::cpp;
Symbol mlp(const vector<int> &layers)
{
	auto x = Symbol::Variable("X");
	auto label = Symbol::Variable("label");
	vector<Symbol> weights(layers.size());
	vector<Symbol> biases(layers.size());
	vector<Symbol> outputs(layers.size());
	for (size_t i = 0; i < layers.size(); ++i)
	{
		weights[i] = Symbol::Variable("w" + to_string(i));
		biases[i] = Symbol::Variable("b" + to_string(i));
		Symbol fc = FullyConnected(
			i == 0 ? x : outputs[i - 1],// data
			weights[i],biases[i],layers[i]);
		outputs[i] = i == layers.size() - 1 ? fc : Activation(fc,ActivationActType::kRelu);
	}
	return SoftmaxOutput(outputs.back(),label);
}
int main(int argc,char** argv)
{
	const int image_size = 28;
	const vector<int> layers{128,64,10};
	const int batch_size = 100;
	const int max_epoch = 10;
	const float learning_rate = 0.1;
	const float weight_decay = 1e-2;
	auto train_iter = MXDataIter("MNISTIter")
		.SetParam("image","./mnist_data/train-images.idx3-ubyte")
		.SetParam("label","./mnist_data/train-labels.idx1-ubyte")
		.SetParam("batch_size",batch_size)
		.SetParam("flat",1)
		.CreateDataIter();
	auto val_iter = MXDataIter("MNISTIter")
		.SetParam("image","./mnist_data/t10k-images.idx3-ubyte")
		.SetParam("label","./mnist_data/t10k-labels.idx1-ubyte")
		.SetParam("batch_size",1)
		.CreateDataIter();
	auto net = mlp(layers);
	// start traning
	cout << "==== mlp training begin ====" << endl;
	auto start_time = chrono::system_clock::now();
	Context ctx = Context::gpu();  // Use GPU for training
	std::map<string,NDArray> args;
	args["X"] = NDArray(Shape(batch_size,image_size*image_size),ctx);
	args["label"] = NDArray(Shape(batch_size),ctx);
	// Let MXNet infer shapes of other parameters such as weights
	net.InferArgsMap(ctx,&args,args);
	// Initialize all parameters with uniform distribution U(-0.01,0.01)
	auto initializer = Uniform(0.01);
	for (auto& arg : args)
	{
		// arg.first is parameter name,and arg.second is the value
		initializer(arg.first,&arg.second);
	}
	// Create sgd optimizer
	Optimizer* opt = OptimizerRegistry::Find("sgd");
	opt->SetParam("rescale_grad",1.0 / batch_size)
		->SetParam("lr",learning_rate)
		->SetParam("wd",weight_decay);
	std::unique_ptr<LRScheduler> lr_sch(new FactorScheduler(5000,0.1));
	opt->SetLRScheduler(std::move(lr_sch));
	// Create executor by binding parameters to the model
	auto *exec = net.SimpleBind(ctx,args);
	auto arg_names = net.ListArguments();
	// Create metrics
	Accuracy train_acc,val_acc;
	// Start training
	for (int iter = 0; iter < max_epoch; ++iter)
	{
		int samples = 0;
		train_iter.Reset();
		train_acc.Reset();
		auto tic = chrono::system_clock::now();
		while (train_iter.Next())
		{
			samples += batch_size;
			auto data_batch = train_iter.GetDataBatch();
			// Data provided by DataIter are stored in memory,should be copied to GPU first.
			data_batch.data.CopyTo(&args["X"]);
			data_batch.label.CopyTo(&args["label"]);
			// CopyTo is imperative,need to wait for it to complete.
			NDArray::WaitAll();
			// Compute gradients
			exec->Forward(true);
			exec->Backward();
			// Update parameters
			for (size_t i = 0; i < arg_names.size(); ++i)
			{
				if (arg_names[i] == "X" || arg_names[i] == "label") continue;
				opt->Update(i,exec->arg_arrays[i],exec->grad_arrays[i]);
			}
			// Update metric
			train_acc.Update(data_batch.label,exec->outputs[0]);
		}
		// one epoch of training is finished
		auto toc = chrono::system_clock::now();
		float duration = chrono::duration_cast<chrono::milliseconds>(toc - tic).count() / 1000.0;
		LG << "Epoch[" << iter << "] " << samples / duration 
			<< " samples/sec " << "Train-Accuracy=" << train_acc.Get();;
		val_iter.Reset();
		val_acc.Reset();
		while (val_iter.Next())
		{
			auto data_batch = val_iter.GetDataBatch();
			data_batch.data.CopyTo(&args["X"]);
			data_batch.label.CopyTo(&args["label"]);
			NDArray::WaitAll();
			// Only forward pass is enough as no gradient is needed when evaluating
			exec->Forward(false);
			val_acc.Update(data_batch.label,exec->outputs[0]);
		}
		LG << "Epoch[" << iter << "] Val-Accuracy=" << val_acc.Get();
	}
	// end training
	auto end_time = chrono::system_clock::now();
	float total_duration = chrono::duration_cast<chrono::milliseconds>(end_time - start_time).count() / 1000.0;
	cout << "total duration: " << total_duration << " s" << endl;
	cout << "==== mlp training end ====" << endl;
	//delete exec;
	MXNotifyShutdown();
	getchar(); // wait here
	return 0;
} 
 编译生成目录 
 运行结果 在官方的example里面有mlp的cpu和gpu两个版本,有兴趣的话可以跑起来做一个对比 其实,在某些数据量小的情况下,gpu版本并不明显比cpu版本消耗的训练时间少 至此,大功告成 (编辑:莱芜站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!  | 
                  
- windows-phone-8 – 添加辅助Windows Phone 8磁贴
 - gdi – 在Windows 10中带有标题栏的模糊窗口? Windows Upd
 - 汇编 – 我的.exe程序不是我的预期
 - 找出占用Installer 目录空间的元凶
 - windows-server-2008-r2 – Windows任务计划程序:由于超时
 - adodb – Windows脚本宿主(jscript):我如何下载二进制文件
 - windows vs2010 下使用glib库 mono4.3
 - PB6.5编译的程序 如何在Win7 和 Win10系统上脱离PB开发环境
 - 故意破坏我的Windows应用程序的最佳方法是什么?
 - windows-8 – 在Windows 8上禁用了DirectX控制面板上的某些
 
